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A note on shock dynamics relative to a moving frame 

By G. B. WHITHAM 
California Institute of Technology, Pasadena, California 

(Received 16 March 1967) 

In  this paper it is shown how a previous theory for treating shocks moving into 
fluid at rest (Whitham 1957,1959) can be changed to a form suitable for treating 
propagation into a steady uniform flow. It is necessary only to transform the 
original theory to a moving frame but the details are not trivial. 

1. Introduction 
In  order to study problems of shocks propagating into an existing uniform 

flow, Chisnell (1965) proposed an extension of a method developed for cases 
where the fluid ahead is at  rest. He studied the problem directly and made further 
assumptions about the gas dynamics involved. However, since the two problems 
must preserve Galilean invariance, it is only necessary to transform the problem 
which has the flow to a frame of reference moving with that flow, and then apply 
the original theory. When this is done, the results do not agree with Chisnell’s. In  
fact there is one crucial qualitative difference: the rays are no longer orthogonal 
to the wave fronts. This is well known in geometrical acoustics and one expects a 
similar result in the non-linear theory. The appropriate transformation is given 
in 5 2, and in $ 3  it is shown that the non-linear theory reduces correctly to geo- 
metric acoustics in the limit of weak shocks. 

2. Transformation between moving frames 

the shock is at  rest. Let frame I1 have co-ordinates (2, y, t )  where 
Let frame I with co-ordinates (x’, y’, t‘) be one in which the medium ahead of 

x = x’+ Ut’, y = y‘, t = t’. (1)  

In  frame I1 the shock appears to be moving through a uniform flow whose 
velocity is U. Let a, be the sound speed of the fluid. 

In  frame I the shock position is described by a function a’(x‘, y’) such that 

a, t’ = a’ (x’, y’) (2) 

is the shock position at  time t’. The shock velocity is normal to it and has magni- 
tude a,&!’ where 

Similarly in frame I1 the shock is described by 

2M’ = (a;.”. + ah?)-&. (3) 

CLOt = a(x,  y). (4) 
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We can relate the two descriptions through the transformation (1). From (1) and 
(2) the shock may be described in frame I1 by the equation 

a, t = a’(x - Ut, y). 

Hence a(x ,  y) is the solution of 

01 = a’(x-ma,y),  (6) 

where m = U/a,. (7) 

In frame I, the theory (Whitham 1959) proposes that the shock will move so 
that a’(x‘, y’) satisfies the equation 

where M‘ = (ak?+ak?)-i, (9) 

A’ = f (M’) ,  (10) 

andf(M’) is a prescribed function. We can also satisfy (9) and (8) by the repre- 
sentation 

The curves p‘ = constant are orthogonal to the shock positions a‘ = constant. 
We may choose (a’,P’) as co-ordinates in place of (x’,y’). Then, eliminating 
( X I ,  y’) from (1 l), we have 

These can be interpreted geometrically as discussed in an earlier paper (Whitham 
1957). 

To transfer to frame 11, we transform the equations (8), (9), (10) for a’(x’, y’) 
into equations for the function a(x , y )  defined in (6). This part is now purely 
mathematical. We have a partial differential equation for a’(z’, y’) and we intro- 
duce a function a(x ,  y) defined as the solution of 

a = a‘(x-ma,y). 

Thus any differential operations on a’(x’, y’) transform according to 

(13) 
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, a;, = -5!L (14) 
a, a;, = ___ 

in particular 
1 -max 1-ma,’ 

The differential equation (8) becomes 

a ( M I  az a ( M I  
+ma - -____ ax A’ 1-ma, ?I ax A’ 1 -ma, 

- ____ 

where 
1 -ma, M ’ =  ~- A’ = f(M‘).  
(a$ +a;)*’ 

The basic geometry in this theory is in terms of rays and ray tubes formed by 
bundles of neighbouring rays. If i is a unit vector along a ray, A is the cross- 
sectional area of a slender ray tube and V is the volume of a slender ray tube 
between two successive shock positions, then 

Here 8, and S2 are the portions of the successive shock surfaces which make up 
the end faces of V ,  and n is the normal to the shock surfaces. 

Now, even if the rays are not normal to the shocks, n. i X  = A ;  therefore, (17) 
is zero and 

V .  (i/A) = 0. (18) 

So we look for a divergence form of (15) and find that it does indeed take this 
form provided 

Since 

we have 

= (1 + m2a;)d. (22) 

We see then, that the rays are not orthogonal to the shock. We note also that A’ 
is just the same as S, the area of the shock cut out by the ray tube; A is the normal 
cross-section. 

The differential equation for a is (18) with i given by (20) and 
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M' is the Mach number of the shock relative to the flow ahead and is given in 
terms of a by 

The striking difference from Chisnell's attempt is that the rays introduced 
here are not the orthogonal trajectories of the shock positions. But this is in 
agreement with the well-known situation in geometrical acoustics, which is, of 
course, the stimulus for the non-linear theory. It is instructive to see how this 
theory fits in with geometrical acoustics. 

3. Comparison with geometrical acoustics for linear problems 
The wave equation for sound waves in a uniform flow U is 

To study discontinuities on a,t = a(x, y )  we may expand $ as 

$ = $&, y)H(a,t-a)+$,(x,y)H,(a,t-a)+ a * - ,  

where H is the Heaviside step function, HI is its integral and so on. This series is 
substituted in (25) and the coefficients of the singular functions are set equal to 
zero. The first two terms give 

E(cx,,~,) a:+aE- (1 = 0 (26) 

(27) and 2(m + (1 - m2) as) $*, + 2CX, $@/ + (( 1 - m2) az, + a%,) $0 = 0. 

The rays are the characteristics for the eikonal equation (26). According to the 
definition of characteristics, these are curves in the direction of the vector 
(aE/aa,, aE/aa,). From (26), 

The magnitude of this vector is the square root of 

4{m + (1 - m2) a,}' + 4 4  = 4{ 1 + m2a;), 

from ( 2 6 ) .  The unit ray vector is then 

It is easily shown through (26) that (20) and (29) agree in this case. 

derivative along the ray. Better still, (27) can be written in divergence form as 
The equation (27) for $,, the magnitude of the discontinuity, involves the 

V . [i&( 1 + m2a;)4] = 0, (30) 
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where i is the ray vector (29). Appealing to the geometrical result in (17) and (18), 
we deduce that 

where A is the cross-sectional area of a slender ray tube. The velocity of the wave 
front along the ray is 

c,=-- a0 - a,( 1 + rn2ap, 
(i. n) 

so that (31) can be written as conservation of energy flux 

$;C,A = constant. (32) 

Finally, let us collect results and note how the non-linear theory contained in 
(18), (20), (23) and (24) may be reduced to geometrical acoustics for the linear 
case. First we set M' = 1 in (24). This uncouples the equations and gives immedi- 
ately an equation for a. It is the correct eikonal equation (26). Then, as we have 
seen above, (18) and (20) give the correct ray geometry. Finally, since 

f(M') cc (M'- 1)-2 as M'+ 1, 

(23) becomes 
1 

(M' - l ) 2  cc 
A ( l  +m2a$)B' 

(33) 

Since ( M ' -  1) is the strength of the disturbance, this agrees with (31). Thus the 
extended theory presented here transforms correctly between moving reference 
frames and fits in perfectly with the corresponding geometrical acoustics for 
linear wave fronts. 
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